

IESS

Deep Depletion CCD Detector Requirements for the Transiting Exoplanet Survey Satellite

George Ricker (PI, MIT)
on behalf of the TESS Science &
Instrument Teams

PACCD2016 Conference — BNL 2 December 2016

collaboration including:

MIT/MKI, MIT/LL, NASA Goddard, NASA Ames, Orbital ATK, STScl, SAO, MPIA-Germany, Las Cumbres Observatory, Geneva Observatory, OHP-France, University of California, University of Florida, Aarhus University-Denmark, Harvard College Observatory, Princeton University, Vanderbilt University...

TESS: A Bridge to the Future...

What is a Transit?

So Many Stars...But Some Are Special!

Primary Goal: Discover Transiting Earths and Super-Earths Orbiting Bright, Nearby Stars

- Rocky Planets & Water Worlds
- Habitable Planets

Discover the "Best" ~1000 **Small** Exoplanets

- "Best" Means "Readily Characterizable"
 - Bright Host Stars
 - Measurable Mass & Atmospheric Properties
- Less than a dozen small transiting exoplanets orbiting bright hosts are presently known

Large Area Survey of Bright Stars

- Sun-like stars: $I_c \lesssim 2$ to $I_c = 12$ magnitude
- M dwarfs known within ~200 light-yrs (I_c ≤ 14)
- "All sky" observations in 2 years:
 - > 200,000 target stars at <2 min cadence
 - > 20,000,000 stars in full frames at 30 min cadence

So Many Stars...But Some Are Special!

Primary Goal: Discover Transiting Earths and Super-Earths Orbiting Bright, Nearby Stars

- Rocky Planets & Water Worlds
- Habitable Planets

Discover the "Best" ~1000 **Small** Exoplanets

- "Best" Means "Readily Characterizable"
 - Bright Host Stars
 - Measurable Mass & Atmospheric Properties
- Less than a dozen small transiting exoplanets orbiting bright hosts are presently known

Large Area Survey of Bright Stars

- Sun-like stars: $I_c \leq 2$ to $I_c = 12$ magnitude
- M dwarfs known within ~200 light-yrs ($I_c \leq 14$)
- "All sky" observations in 2 years:
 - > 200,000 target stars at <2 min cadence
 - > 20,000,000 stars in full frames at 30 min cadence

- How do we arrange for brighter stars?
 - By design in two ways...

- How do we arrange for brighter stars?
 - By design in two ways...

- Increase solid angle coverage
 - $\Omega_{TESS} \simeq 400 \ \Omega_{Kepler}$
 - Number of accessible bright stars increases by same factor

- How do we arrange for brighter stars?
 - By design in two ways...

- $\Omega_{TESS} \simeq 400 \ \Omega_{Kepler}$
- Number of accessible bright stars increases by same factor

- Select stars that are much closer
 - TESS: ~10² light-yr
 - Kepler: ~10³ light-yr

2009

- How do we arrange for brighter stars?
 - By design in two ways...

- TESS: ~10² light-yr
- Kepler: ~10³ light-yr

1/R² dependence means TESS stars are ~100 times brighter on average

2017

S

A brief tour of **TESS** CCD hardware

Layout of TESS Camera Array

Layout of TESS Camera Array

Ricker et al. (2014)

Ricker et al. (2014)

Ricker et al. (2014)

TESS CCID-80 Die Overview

TESS CCID-80 Die Overview

TESS CCID-80 Die Overview

CCD Wafer Fabrication

- 200-mm wafer technology
 - High purity, float-zone silicon
 - Three poly, Two Metal
 - Stitched photolithography
- Back Illumination
 - Bonding, thinning to 100 micron
 - Back-surface passivation
 - Anti-reflection coating
 - Light shield
- On site Microelectronics Laboratory
 - 8,100 sq. ft. class-10 + 10,000 sq. ft. class-100
 - Trusted design and foundry certification
 - Broad application base
 - 90-nm CMOS
 - Single flux quantum electronics
 - 3D circuit stacking
 - · Integrated photonics

Full Production Class CMOS Suite
Mix & Match and Stitching Lithography Capability

Two-Step CCD Fabrication Process

- Front illumination fabrication produces operational devices
- Subsequent back illumination fabrication steps include mounting and thinning
 - Dramatically improves device quantum efficiency
 - Reduces sub-pixel sensitivity variations

Completed CCID-80 Stages

Fully Depleted Back-Illuminated CCD for TESS: CCID-80

Parameter	Specification		
Format	2048(H) x 2048(V) Frame Transfer		
Physical Pixels	2048 x 4132 [32 x 64 mm die]		
Pixel Size	15μm x 15μm		
Output Ports	Single Stage MOSFET – 4 per CCD		
Charge Injection	Three-phase CI register at top		
Silicon Thickness	100μm high resistivity (>5 kohm-cm)		
Depletion Control	Detector bias		
Package Type	3-side abuttable		
Charge Handling	> 150ke-		
Noise	< 20e- with FPE @ 625kHz		
QE	> 50% @ 950nm		
Quantity	> 26 flight grade devices		

CCID-80 Back-Illuminated Test Results

	Performance	Specification	Achieved
~	Full Well Capacity	> 150,000 e- (goal)	> 200,000 e-
'	Conservation of Bloomed Charge	Best Effort	~ 100x full well
/	Conversion Gain	< 10 µV/e-	8 μV/e-
_	Read Noise @ 625 kHz	< 20 e-	< 10 e-
_	Dark Current @ -30°C	< 8 e-/pix/s	< 2.5 e-/pix/s
_	Device Thickness	100 μm (-10/+15μm)	95 – 115 μm
_	Depletion-depth control	Substrate bias	Functional
_	Targeted Spectral Range	600-1000 nm	70% @ 950 nm
•	Flight Quantity Needed	26	>70 Candidates for packaging

TESS CCD Flatness: Meets Requirements

TESS Focal Plane Array Flat Field

TESS Focal Plane Array Flat Field

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

TESS CCID-80 QE Measurements

TESS CCID-80 QE Measurements

TESS CCD Focal Plane Array During Final Inspection

TESS Flight Focal Plane Array #2 in Test at MIT

TESS Flight Camera 1 Prep'd for Thermal Vac Tests

TESS Sky Mapping Strategy

http://www.youtube.com/watch?v=mpViVEO-ymc

TRANSITING EXOPLANET SURVEY SATELLITE

DISCOVERING NEW EARTHS AND SUPER-EARTHS
IN THE SOLAR NEIGHBORHOOD

TESS Sky Mapping Plan

TESS 2-year Sky Coverage Map

TESS's Novel High Orbit

Uninterrupted viewing for >95% of time

Orbital Periods:

TESS = 13.7 daysMoon = 27.4 days

- ⇒ 2:1 Resonance
- → 90° Phasing

TESS's Novel High Orbit

Uninterrupted viewing for >95% of time

Orbital Periods:

TESS = 13.7 days Moon = 27.4 days

- ⇒ 2:1 Resonance
- ⇒ 90° Phasing

TESS's Novel High Orbit

Uninterrupted viewing for >95% of time

Orbital Periods:

TESS = 13.7 days Moon = 27.4 days

- ⇒ 2:1 Resonance
- → 90° Phasing

Provides seven major advantages:

Provides seven major advantages:

- Extended & Unbroken Observations: >300 hrs per orbit
- Thermal Stability: <40 mK/hr (passive control only)
- Earth/Moon Stray Light Reduction: 10⁶ times less than LEO
- Low Radiation Levels: Outside of Earth's Radiation Belts
- Frequent Launch Windows: Several days per lunar month
- Excellent Pointing Stability: No Drag, No Gravity Gradient
- High Data Rates: 100 Mbit/s (200 GB in 4.5hr at Perigee)

Provides seven major advantages:

- Extended & Unbroken Observations: >300 hrs per orbit
- Thermal Stability: <40 mK/hr (passive control only)
- Earth/Moon Stray Light Reduction: 10⁶ times less than LEO
- Low Radiation Levels: Outside of Earth's Radiation Belts
- Frequent Launch Windows: Several days per lunar month
- Excellent Pointing Stability: No Drag, No Gravity Gradient
- High Data Rates: 100 Mbit/s (200 GB in 4.5hr at Perigee)
 - → 1/R² advantage: ~ 23 dB gain over an L2 orbit

Gangestad et al. 2013 (astro-ph 1306.5333)

Q: What Will TESS Star Field Images Look Like?

A: Use Model Simulations from Catalogs of Known Stars

2-minute cadence for 200,000 stars

prioritizing detectability of small planets

1 degree

One TESS CCD 12 degrees

24 degrees S

30-minute cadence for full frame images (>30 million objects in survey...)

TESS timeline:

Takeaways

- TESS is needed to find nearby bright small transiting planets.
- TESS is being built and is on schedule to launch in late 2017.
- TESS could in principle operate for more than two decades
- The TESS planets will endure as the best small planet targets for radial velocity mass measurements and atmospheric characterization.

